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A new molecular graph matrix, the reciprocal distance (RD) matrix, is defined. Its 
nondiagonal elements are equal to the reciprocals of the topological distances between 
the corresponding vertices, while the diagonal elements are all equal to zero. Based on 
the RD matrix, a real-number local vertex invariant, RDS was proposed, and three 
topological indices, namely RDSUM, RDSQ, and RDCHI, were def'med. Their degeneracy 
was investigated and proved to be lower than that of the topological index W based on 
the distance matrix. The correlational ability of the new molecular descriptors was 
tested against van der Waals molecular surfaces and boiling points of alkanes, showing 
a satisfactory monoparametric dependence. 

1. Introduction 

Molecular topology determines a large number of molecular properties ranging 
from physico-chemical and thermodynamic properties to chemical reactivity and 
biological activity. In this respect, chemical applications of graph theory have 
undergone dramatic expansions in recent years [2-5]. 

From a practical point of view, an efficient way of coding the topology of 
a chemical structure is represented by topological indices [6, 7]. A topological index 
(TI) is a numerical quantity which characterizes the bonding topology of a molecule. 
Such indices reflect in different ways the size and shape of the molecules they 
characterize, and also provide some measure of the degree of molecular branching. 

By removing all hydrogen atoms from the chemical formula of a chemical 
compound containing covalent bonds, we obtain the hydrogen-depleted graph (or 

*For part 3 of this series, see ref. [1]. 
*This paper is dedicated to Frank Harary on the occasion of his 70th anniversary. We agree with N. 

Trinajsti6's proposal to call RDSUM the "Harary number". 

© LC. Baltzer AG, Science Publishers 
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molecular graph) of that compound, whose vertices correspond to non-hydrogen 
atoms. In the particular case o f  hydrocarbons, the vertices of the molecular graph 
denote carbon atoms. 

A few useful graph-theoretical definitions will be introduced. Let G = (V, E) 
be a graph G with N vertices, q edges, the cyclomatic number # = q - N + 1, the 
vertex set V(G), and the edge set E(G). The cyclomatic number # represents the 
number of  cycles in the graph, DEGI denotes the degree of the vertex i in G, i.e. 
the number of edges incident with the vertex i. Acyclic graphs have/.t = 0 and are 
called trees. 

The topology of a chemical structure can be coded in matrix form by the use 
of the adjacency matrix. The adjacency matrix of a graph G with N vertices, A(G) = A, 
is the square N x N symmetric matrix which contains information about the connectivity 
of vertices in G. Its entries are defined as 

1 for vertices i, j adjacent, 
(A)ij = 0 otherwise. 

The sum of  entries over row i or column i in A(G) is DEGi. 
As an example, the molecular graph and the adjacency matrix of 3-methylhexane 

(7"I) are given below. This graph is the smallest identity tree because its only 
symmetry operation is the identity (no vertices are equivalent). 

A(TI) = 

7 

rl 

0 1 0 0 0 0 0 
1 0 1 0 0 0 0 
0 1 0 1 0 0 1 
0 0 1 0 1 0 0 
0 0 0 1 0 1 0 
0 0 0 0 1 0 0 
0 0 1 0 0 0 0 

The distance matrix of  a graph G with N vertices, D(G) = D, is a square 
N x N symmetric matrix, whose entries (D)ij, are equal to the number of  edges 
between vertices i and j on the shortest path between them. Thus, entries 1 are the 
same as in A(G), and its main diagonal entries are equal to zero as in A(G), but 
all other entries are integers larger than 1. In the recent literature, there are many 
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efficient algorithms available for computing the distance matrix for any molecular 
graph [8,9]. The numerous applications of the distance matrix to various branches 
of chemistry were recently surveyed [10]. The distance matrix of  the graph 7'1 is 
shown below: 

D(TI) = 

"0 1 2 3 4 5 3 
1 0 1 2 3 4 2 
2 1 0 1 2 3 1 
3 2 1 0 1 2 2 
4 3 2 1 0 1 3 
5 4 3 2 1 0 4 
3 2 1 2 3 4 0 

The distance sum of the vertex i, DSi, is defined as the sum of the topological 
distances between vertex i and every vertex in the molecular graph, i.e. the sum 
over row i or column i in D(G), 

N 

DSi = ~ (D)ij. 
j=l 

2. Topological indices 

The high correlational ability of TIs with a wide range of physico-chemical 
and biological properties was theoretically interpreted by Klein [11, 12]. He suggested 
that TIs are low-order cluster expansions of the chemical structure, with a rapid 
convergence. A brief presentation of some of the most important TIs will follow. 

A graph-theoretic invariant (GTI) is termed additive [11,12] if 

GTI(G 1 w G a) = GTI(G 1) + GTI(Ga), 

where G1 u G2 denotes the graph composed of two disconnected components GI 
and G2. Such an additive TI is the topological index W, introduced in 1947 by 
Wiener [13,14] for predicting the alkane boiling points. Wiener extended the application 
of the W index to other physical properties of alkanes such as heats of formation, 
heats of  vaporization, molar volumes, and molar refractions. 

In the original work by Wiener, the W index was not formulated explicitly 
in graph-theoretical terms. Hosoya [15] pointed out that the Wiener index can be 
obtained from the distance matrix of the molecular graph, and is equal to the half- 
sum of the elements of the distance matrix D. The Wiener index may be expressed 
also as the half-sum of the distance sums of the molecular graph: 

N N N 

w= 7Z Z(m,j 
i=1 j=l i=1 
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The relatively high degeneracy of W may be reduced by using information 
theory, as shown by Bonchev and Trinajsti6 [16], who devised ways for increasing 
the correlation ability while decreasing the degeneracy of topological indices. 

Another additive graph-theoretic invariant is the Randi~ connectivity index, 
defined as [17] 

Z = Z ( D E G i  DEGj) -1/2, 
E(G) 

where DEGi and DEGj denote the degrees of the two endpoints of an edge eiy in 
the molecular graph. The summation is extended over all edges in the molecular 
graph. The TI Z is the most used one as a molecular descriptor in structure- 
property and structure-activity relationship studies [18, 19]. 

The highly discriminating TI J (average distance sum connectivity) was defined 
by the formula [20, 21] 

_ q Z(DS i DSj) -1/2, 
J(G) l.t + 1 E(G) 

where DSi and DSj denote the distance sums of the endpoints of an edge in the 
molecular graph and the summation goes over all edges in the molecular graph. 

Attempts were made to reveal the physical meaning of a selected set of the 
most used TIs [22,23]. The interesting finding was that TIs based on the distance 
matrix, namely W and J, as well as indices derived from information theory, 
Io e, [D e, I w and [w, reflect accurately van der Waals areas, while indices such as 
3 Z (connectivity calculated for paths of length 3 instead of edges, which are paths 
of length 1, as in Randi6's connectivity Z defined above) represent a measure of  
the molecular van der Waals volumes, as indicated by correlations with molar 
refractions or densities of alkanes. 

3. Reciprocal distance matrix 

From the definition of the Wiener index, it is apparent that the larger the 
distance sum, the greater the associated weight for a given vertex. 

Usually, any interaction must decrease with the increase of the distance 
between the interacting particles. We define a new molecular graph matrix, in 
which the weight of the distance between two atoms decreases with the increase of 
the distance. 

The reciprocal distance matrix of a graph G with N vertices, RD(G) = RD, 
is a square N × N symmetric matrix whose entries (RD)Ij are equal to the reciprocal 
of  the distance between vertices i and j for non-diagonal elements, and are equal 
to zero for the diagonal elements. 

0 for i = j ,  
(RD)0=  d,~ 1 f o r i ~ : j .  
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The RD matrix of  the tree T 1 corresponding to the molecular graph of  3- 
methylhexane is presented below (the real-number entries are truncated here to two 
decimal digits): 

RD(T:) = 

0 1 0.50 0.33 0.25 0.20 0.33 

1 0 1 0.50 0.33 0.25 0.50 

0.50 1 0 1 0.50 0.33 1 

0.33 0.50 1 0 1 0.50 0.50 

0.25 0.33 0.50 1 0 1 0.33 

0.20 0.25 0.33 0.50 1 0 0.25 

0.33 0.50 1 0.50 0.33 0.25 0 

The RD matrix was successfully used in a study concerning computer generation 
of acyclic graphs based on local vertex invariants and topological indices [24]. 

. N e w  graph invariants (local and global) based on the reciprocal distance 
m a t r i x  

The reciprocal distance sum of the vertex i, RDSi, is defined as the sum of  
the elements of  the RD matrix over row i or column i: 

N 
RDSi = (RD) o. 

j=1 

The RDS vector for the tree 7"1 is given below for vertices 1-7 ,  respectively. 

RDS(T1) = {2.61667, 3.58333, 4.33333, 3.83333, 3.41667, 2.53333, 2.91667}. 

This local vertex (atomic) invariant (LOVI) is a real number, like several new 
LOVIs defined recently [25]. 

We note that the RDS vector is identical to the recently defined vertex 
topological index VTIlo [26]. 

In the following section, three new global (molecular) invariants (topological 
indices) which are real numbers will be introduced. 

On the basis of  the RD matrix, we define the RDSUM index, equal to the 
half-sum of  the elements of the reciprocal distance matrix RD. The RDSUM index 
may also be expressed as the half-sum of  the RDS vector of  the molecular graph: 

N N N 
1 1 RDSUM = ~- 2 Z (RD)ij "-" ~- 2 RDSi. 
i=l j=l i=I 
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Anothe r  index def ined  on the basis o f  the RD S  vec to r  is the R D S Q  index: 

RDSQ = ~ (RDSI RDSj )  1/2. 
g(a) 

In ana logy  with the Randi6 Z index,  we def ine  the R D C H I  index: 

RDCHI  = ~ (RDSi R D S j )  -1/2. 

In table 1, we present  the values  o f  the three topologica l  indices R D S U M ,  
RD S Q,  and R D C H I  for  the set o f  19 alkanes with 4 - 7  carbon atoms. 

Table 1 

Topological indices RDSUM, RDSQ, and RDCHI 
of 19 alkanes with 4-7  carbon atoms. 

for the set 

Alkane RDSUM RDSQ RDCHI A a BP b 

butane 4.33333 6.78174 1.33420 - - 0.5 
2-Me-propane 4.50000 7.34847 1.22474 - - 10.5 

pentane 6.41667 10.69008 1.50919 - 36.5 
2-Me-butane 6.66667 11.50536 1.40069 - 27.9 
2,2-Me2-propane 7.00000 12.64911 1.26491 - 9.5 

hexane 8.70000 15.05183 1.67761 - 68.7 
2-Me-pentane 9.00000 16.00403 1.57682 - 60.2 
3-Me-pentane 9.08333 16.24542 1.55857 - 63.2 
2,3-Me2-butane 9.33333 17.06395 1.47474 - 58.1 
2,2-Me2-butane 9.50000 17.63881 1.43021 - 49.7 

heptane 11.15000 19.78208 1.84000 334.36 98.4 
2-Me-hexane 11.48333 20.82106 1.74635 322.91 90.0 
3-Me-hexane 11.61667 21.19445 1.72321 316.67 91.8 
3-Et-pentane 11.75000 21.56689 1.69795 303.15 93.5 
2,4-Mez-pentane 11.83333 21.90865 1.65407 309.97 80.5 
2,3-Me2-pentane 12.00000 22.38932 1.62717 303.11 89.8 
2,2-Me2-pentane 12.08333 22.72680 1.60437 306.53 79.2 
3,3-Mez-pentane 12.25000 23.20776 1.57545 297.20 86.0 
2,2,3-Mea-butane 12.50000 24.02922 1.50909 292.89 80.9 

*Molecular van der Waals area (•2). 
bBoiling point at normal pressure (°C). 

While R D S U M  and RDSQ increase both with molecular  size and with branching 
degree ,  R D C H I  (l ike Z)  increases  with molecu la r  size but  decreases  with molecu la r  
branching,  as seen in table 1. The  in te rmolecula r  order ing o f  i somer ic  alkanes 
(table 1) for  all three new TIs  paral lels  exac t ly  that induced by l o  w, and differs  f rom 
that induced  by  J or  by  Ber tz ' s  graph der iva t ives  [27] on ly  in the pe rmuted  o rde r  

o f  3 -e thy lpentane  and 2 ,4-d imethylpentane .  
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In a study concerning structural selectivities of TIs [28], the Wiener index 
was found to have a good correlational ability, but a low selectivity (high degeneracy) 
when compared with the set of studied TIs. The first two degenerate pairs of 
isomeric alkanes with identical Wiener index are encountered for heptanes, 
namely: 

W(2,2-Me2-C5) = W(2,3-Me2-Cs) = 46, 

W(3-Et-C5) = W(2,4-Me2-C5) = 48. 

The degeneracy of the three new indices was tested up to and including the 
pentadecanes. While RDSUM was found to be degenerate for two nonanes, 

RDSUM(2,2-Me2-CT) = RDSUM(2,3-Me2-CT) = 17.55000 

and for higher alkanes, the other indices were nondegenerate for all alkanes tested. 
However, they will be degenerate for some octadecanes which were shown to 
present degeneracy for indices based on distances [29]. A pair of octadecanes with 
identical distance degree sequence and degenerate distance-based T Is is represented 
by the trees T2 and T3, 

7"2 

W(T2) = W(T3) = 5 8 3 ,  

RDSUM(T2) = RDSUM(T3) = 55.23571, 

RDSQ(T2) = RDSQ(T3) = 113.74407, 

RDCHI(T/) = RDCHI(T3) = 2.59963. 

One must note that high selectivity is not sufficient to obtain good results in 
structure-property correlations if the values of the TIs do not reflect properly the 
connection between the chemical structure and a certain property. On the other 
hand, a low degeneracy of a TI is highly desirable, ensuring a selective characterization 
among isomers. 

Monoparametric correlations with van der Waals areas of the nine heptane 
isomers were tested for the TIs with the following results, where r is the correlation 
coefficient and s is the standard deviation: 
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A = 164.830 (-+36.821) + 3.017(-+0.764)W 

A= 667.641(_+146.279) - 30.206(_+12.336)RDSUM 

A= 518.118 (-+93.106) - 9.494(-+4.234)RDSQ 

A = 104.763 (_+93.440) + 123.111(_+56.059)RDCHI 

r 8 

0.979 2.823 

- 0.949 4.408 

- 0.940 4.767 

0.938 4.856 

As is apparent from the equations, the Wiener index gives the best correlation 
with the van der Waals area; another finding is the negative correlation coefficient 
between molecular area and indices RDSUM and RDSQ. 

Monoparametric correlations with boiling points (BP) (at normal pressure) 
for all 72 alkanes with n = 4 - 9  carbon atoms were tested for the TIs with the 
following results: 

BP = 20.599(+ 11.137) + 1.229(+0.142)W 

BP = - 25.904(_+ 14.053) + 9.159(+0.911)RDSUM 

BP= - 11.936(-+15.352) + 4.331(-+0.521)RDSQ 

BP= 191.930(+52.525) + 171.346(+29.543)RDCHI 

r s 

0.940 12.538 

0.954 10.988 

0.935 13.024 

0.878 17.528 

It is known that the boiling points of  normal alkanes show a nonlinear increase 
with an increasing number of  carbon atoms. It was demonstrated that the variation 
can be interpreted in terms of  the fractal dimension of  alkanes [30]. Following this 
finding, monoparametric correlations between boiling points and the logarithm of  
the TIs under consideration were tested for the same set of  72 alkanes: 

r 

BP = - 158.158(_+ 15.559) + 148.139(_+ 8.488)lg(W) 0.984 

BP = - 172.507(_+23.981) + 245.412(_+20.599)lg(RDSUM) 0.967 

BP = - 197.201(_+30.998) + 215.629(_+21.550)lg(RDSQ) 0.954 

BP = - 53.816(_+26.300) + 672.991(_+ 105.345)lg(RDCHI) 0.896 

S 

6.526 

9.391 

11.032 

16.243 

For the same reasons, monoparametric correlations between boiling points 
and the square root of  the TIs under investigation were tested for the same set of  
72 alkanes: 

r s 

BP= -47.043(+12.226)+ 18.883(+ 1.426)W 1/z 0.973 8.499 

BP= - 134.060(+21.249)+ 64.026(+5.495)RDSUM 1/2 0.965 9.589 

BP = - 107.762(+22.928)+ 41.565(+4.303)RDSQ I/2 0.951 11.389 

BP = - 485.245(+97.893)+ 449.076(+73.618)RDCHI 1/1 0.888 16.851 
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One can conclude that in linear monoparametric correlations with normal 
boiling points of alkanes, RDSUM behaves somewhat better that W (comparably to 
Hosoya's index Z). It should be noted, however, that the above r and s values are 
only fair, and that for correlations with boiling points, much better topological 
indices were developed (e.g. ref. [31]). 

In the above correlations with boiling points, the molecular size rather than 
shape is the factor of prime importance. The ability of the TIs to reflect the molecular 
shape was tested in correlation with the boiling points of the set of 35 nonanes. The 
shortcomings of the indices are clearly revealed by the very low correlation coefficient, 
equal to -0.315 for RDSUM, -0.333 for RDSQ, and 0.403 for RDCHI, denoting 
that the main contribution to the three TIs under study is represented by the molecular 
size, and with a small contribution of the molecular shape. A similar observation 
concerning the Wiener index was recently published [32]. 

Table 2 presents the intercorrelation matrix of the TIs Z, J, W, RDSUM, 
RDSQ, and RDCHI for the set of 72 alkanes with 4 - 9  carbon atoms. The high 
intercorrelation coefficient between RDSUM and RDSQ indicates that these TIs 

Table 2 

Intercorrelation matrix of TIs Z, J, W, RDSUM, RDSQ, and RDCHI. 

RDCHI RDSQ RDSUM W J Z 

Z 0.930 0.900 

J 0.120 0.773 

W 0.920 0.887 

RDSUM 0.745 0.998 

RDSQ 0.697 1.000 

RDCHI 1.000 

0.927 0.968 0.465 

0.731 0.408 1.000 

0.915 1.000 

1.000 

1.000 

express approximately the same type of structural information. On the other hand, 
as expected from the definition, RDCHI correlates poorly with RDSUM and RDSQ. 
The correlation with three widely used TIs brings new information: the Randi6 X 
index correlates best with the three RD matrix indices, followed by the Wiener 
index, whereas the TI J does not correlate with RDCHI and expresses only a low 
correlation with RDSUM and RDSQ. 

Independently, graph-theoretic invariants similar to RD and RDSUM were 
recently defined by Trinajsti~ et al. [33]. 

A different approach to LOVIs and TIs where the weight of distances decreases 
with their increase appeared recently [34]. 
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